Source code for pixstem.radial

import math
import numpy as np
import numpy.linalg as la
from tqdm import tqdm
from hyperspy.components1d import Polynomial, Gaussian
from hyperspy.signals import Signal2D
from hyperspy.utils.markers import point, line_segment
from hyperspy.misc.utils import isiterable
import pixstem.pixelated_stem_tools as pst


def _centre_comparison(
        s, steps, step_size,
        crop_radial_signal=None, angleN=8):
    """
    Compare how the centre position affects the radial average.
    Useful for finding on optimal centre position if one has some
    round feature. Returns a list of image stacks, one image stack
    for each centre position, and the image stack consists of radially
    averaged segments of an image.

    Currently only works with signals with 0 navigation dimensions.

    Parameters
    ----------
    s : HyperSpy 2D signal
    steps : int
    step_size : int
    crop_radial_signal : tuple, optional
    angleN : int, default 8
    """
    if s.axes_manager.navigation_dimension != 0:
        raise ValueError(
                "centre_comparison only works for pixelatedSTEM "
                "signals with 0 navigation dimensions")
    s_list = []
    centre_list = get_centre_position_list(s, steps, step_size)
    for centre_x, centre_y in centre_list:
        s_angle = s.angular_slice_radial_average(
                angleN=angleN,
                centre_x=np.array([centre_x]),
                centre_y=np.array([centre_y]),
                show_progressbar=False)
        if crop_radial_signal is not None:
            s_angle = s_angle.isig[crop_radial_signal[0]:crop_radial_signal[1]]
        s_angle.metadata.add_node("Angle_slice_processing")
        s_angle.metadata.Angle_slice_processing.centre_x = centre_x
        s_angle.metadata.Angle_slice_processing.centre_y = centre_y
        s_list.append(s_angle)
    return(s_list)


[docs]def get_coordinate_of_min(s): """ Returns the x and y values of the minimum in a signal. """ z = s.data idx = np.argwhere(z == np.min(z)) x = s.axes_manager[0].index2value(idx[0][1]) y = s.axes_manager[1].index2value(idx[0][0]) return(x, y)
[docs]def get_centre_position_list(s, steps, step_size): """ Returns a zip of x and y coordinates based on the offset of the center- point, and number of steps in each direction and a step-size given in pixels. Scale and offset taken from axes_manager. """ scale_x = s.axes_manager.signal_axes[0].scale scale_y = s.axes_manager.signal_axes[1].scale d1_x = scale_x*steps*step_size d2_x = scale_x*(steps + 1)*step_size d1_y = scale_y*steps*step_size d2_y = scale_y*(steps + 1)*step_size x0 = -s.axes_manager[0].offset y0 = -s.axes_manager[1].offset centre_x_list, centre_y_list = [], [] range_x = np.arange(x0 - d1_x, x0 + d2_x, step_size*scale_x) range_y = np.arange(y0 - d1_y, y0 + d2_y, step_size*scale_y) for x in range_x: for y in range_y: centre_x_list.append(x) centre_y_list.append(y) centre_list = zip(centre_x_list, centre_y_list) return(centre_list)
[docs]def get_optimal_centre_position( s, radial_signal_span, steps=3, step_size=1, angleN=8, show_progressbar=True): """ Find centre position of a ring by using angle sliced radial average. Takes signal s, radial span of feature used to determine the centre position. Radially averages the feature in angleN segments, for each possible centre position. Models this averaged signal as a Gaussian and returns array of with the standard deviations of these Gaussians. Note, the approximate centre position must be set using the offset parameter in the signal. The offset parameter is the negative of the position shown with s.plot(). So if the centre position in the image is x=52 and y=55: s.axes_manager.signal_axes[0].offset = -52 s.axes_manager.signal_axes[1].offset = -55 This can be checked by replotting the signal, to see if the centre position has the values x=0 and y=0. Parameters ---------- s : HyperSpy 2D signal Only supports signals with no navigation dimensions. radial_signal_span : tuple Range for finding the circular feature. steps : int, default 3 Number of steps in x/y direction to look for the optimal centre position. If the offset is (50, 55), and step_size 1: the positions x=(45, 46, 47, 48, ..., 55) and y=(50, 51, 52, ..., 60), will be checked. step_size : int, default 1 angleN : int, default 8 See angular_slice_radial_average for information about angleN. Returns ------- Optimal centre position : HyperSpy 2D signal Examples -------- >>> import pixstem.dummy_data as dd >>> s = dd.get_single_ring_diffraction_signal() >>> s.axes_manager.signal_axes[0].offset = -105 >>> s.axes_manager.signal_axes[1].offset = -67 >>> import pixstem.radial as ra >>> s_ocp = ra.get_optimal_centre_position(s, (35, 45), steps=2) >>> centre_pos = ra.get_coordinate_of_min(s_ocp) """ s_list = _centre_comparison( s, steps, step_size, crop_radial_signal=radial_signal_span, angleN=angleN) m_list = [] for temp_s in tqdm(s_list, disable=(not show_progressbar)): temp_s.change_dtype('float64') temp_s = temp_s - temp_s.data.min() temp_s = temp_s/temp_s.data.max() am = temp_s.axes_manager g_centre = temp_s.inav[0].data.argmax()*am[-1].scale + am[-1].offset g_sigma = 3 g_A = temp_s.data.max()*2*g_sigma m = temp_s.create_model() g = Gaussian( A=g_A, centre=g_centre, sigma=g_sigma) m.append(g) m.multifit(show_progressbar=False) m_list.append(m) s_centre_std_array = _get_offset_image(m_list, s, steps, step_size) return(s_centre_std_array)
[docs]def refine_signal_centre_position( s, radial_signal_span, refine_step_size=None, **kwargs): """Refine centre position of a diffraction signal by using round feature. This function simply calls get_optimal_centre_position with a smaller and smaller step_size, giving a more accurate centre position. The calculated centre position is stored in the offset value in the input signal. Parameters ---------- s : HyperSpy 2D signal Approximate centre position must be set beforehand, see get_optimal_centre_position for more information. radial_signal_span : tuple refine_step_size : list, default [1, 0.5, 0.25] **kwargs Passed to get_optimal_centre_position See also -------- get_optimal_centre_position : finds the centre positions for a step_size Example ------- >>> import pixstem.dummy_data as dd >>> import pixstem.radial as ra >>> s = dd.get_single_ring_diffraction_signal() >>> s.axes_manager[0].offset, s.axes_manager[1].offset = -103, -69 >>> ra.refine_signal_centre_position(s, (32., 48.), angleN=4) >>> x, y = s.axes_manager[0].offset, s.axes_manager[1].offset """ if refine_step_size is None: refine_step_size = [1., 0.5, 0.25] for step_size in refine_step_size: s_centre = get_optimal_centre_position( s=s, radial_signal_span=radial_signal_span, step_size=step_size, **kwargs) x, y = get_coordinate_of_min(s_centre) s.axes_manager[0].offset, s.axes_manager[1].offset = -x, -y
def _get_offset_image(model_list, s, steps, step_size): """ Make offset image signal based on difference in Gaussian centre position. Creates a Signal2D object of the standard deviation of the Gaussians fitted to the radially averaged features, as a function of center coordinate. Parameters ---------- model_list : list of HyperSpy model objects s : HyperSpy 2D signal steps : int step_size : int Returns ------- offset_signal : HyperSpy 2D signal """ s_offset = Signal2D(np.zeros(shape=((steps*2)+1, (steps*2)+1))) am = s.axes_manager.signal_axes offset_x0 = -am[0].offset - (steps * step_size) offset_y0 = -am[1].offset - (steps * step_size) s_offset.axes_manager.signal_axes[0].offset = offset_x0 s_offset.axes_manager.signal_axes[1].offset = offset_y0 s_offset.axes_manager.signal_axes[0].scale = step_size s_offset.axes_manager.signal_axes[1].scale = step_size am_o = s_offset.axes_manager.signal_axes for model in model_list: x = model.signal.metadata.Angle_slice_processing.centre_x y = model.signal.metadata.Angle_slice_processing.centre_y std = model.components.Gaussian.centre.as_signal().data.std() iX, iY = am_o[0].value2index(x), am_o[1].value2index(y) s_offset.data[iY, iX] = std return s_offset def _make_radius_vs_angle_model( signal, radial_signal_span, angleN=15, centre_x=None, centre_y=None, prepeak_range=None, show_progressbar=True): s_ra = signal.angular_slice_radial_average( angleN=angleN, centre_x=centre_x, centre_y=centre_y, show_progressbar=show_progressbar) s_ra = s_ra.isig[radial_signal_span[0]:radial_signal_span[1]] m_ra = s_ra.create_model() # Fit 1 order polynomial to edges of data to account for the background sa = m_ra.axes_manager.signal_axes[0] if prepeak_range is None: prepeak_range = (sa.low_value, sa.index2value(4)) m_ra.set_signal_range(prepeak_range[0], prepeak_range[1]) m_ra.add_signal_range(sa.index2value(-3), sa.high_value) polynomial = Polynomial(1) m_ra.append(polynomial) m_ra.multifit(show_progressbar=show_progressbar) polynomial.set_parameters_not_free() m_ra.reset_signal_range() # Fit Gaussian to diffraction ring centre_initial = (sa.high_value + sa.low_value)*0.5 sigma = 3 A = (s_ra - s_ra.min(axis=1)).data.max() * 2 * sigma gaussian = Gaussian(A=A, sigma=sigma, centre=centre_initial) gaussian.centre.bmin = sa.low_value gaussian.centre.bmax = sa.high_value m_ra.append(gaussian) return m_ra
[docs]def get_radius_vs_angle( signal, radial_signal_span, angleN=15, centre_x=None, centre_y=None, prepeak_range=None, show_progressbar=True): """ Get radius of a ring as a function of angle. This is done by radially averaging angular slices of the image, followed by firstly fitting the background around the specified ring, then fitting a Gaussian to the remaining intensity in the ring (which gets reduced to a peak due to the radial average). Useful for finding if a ring is circular or elliptical. The centre position has be to set using the offset parameter in signal.axes_manager. Parameters ---------- signal : HyperSpy 2D signal Diffraction image with calibrated centre point. This can be set manually, by looking at the diffraction pattern, or use a function like radial.get_optimal_centre_position radial_signal_span : tuple angleN : default 15 centre_x, centre_y : NumPy arrays prepeak_range : tuple, optional show_progressbar : default True Returns ------- s_centre : HyperSpy 1D signal Examples -------- >>> import pixstem.dummy_data as dd >>> s = dd.get_single_ring_diffraction_signal() >>> s.axes_manager.signal_axes[0].offset = -105 >>> s.axes_manager.signal_axes[1].offset = -67 >>> import pixstem.radial as ra >>> s_centre = ra.get_radius_vs_angle(s, (35, 45), show_progressbar=False) """ m_ra = _make_radius_vs_angle_model( signal=signal, radial_signal_span=radial_signal_span, angleN=angleN, centre_x=centre_x, centre_y=centre_y, prepeak_range=prepeak_range, show_progressbar=show_progressbar) m_ra.multifit(fitter='mpfit', bounded=True, show_progressbar=show_progressbar) s_centre = m_ra.components.Gaussian.centre.as_signal() return s_centre
[docs]def get_angle_image_comparison(s0, s1, angleN=12, mask_radius=None): """Compare two images by overlaying one on the other in slices. This function takes two images, extracts different angular slices and combines them into one image. Useful for comparing two diffraction images, to see if the rings have the same radius. Parameters ---------- s0, s1 : HyperSpy 2D Signal Both signals need to have the same shape, and no navigation dimensions. angleN : int, default 12 Number of angular slices. mask_radius : int, optional Mask the centre of the image. The default is not to mask anything. Useful to mask the most intense parts of the diffraction pattern, so the less intense parts can be visualized. Returns ------- comparison_signal : HyperSpy 2D Examples -------- >>> from pixstem.make_diffraction_test_data import MakeTestData >>> test_data0 = MakeTestData(300, 300) >>> test_data0.add_ring(150, 150, 40) >>> test_data1 = MakeTestData(300, 300) >>> test_data1.add_ring(150, 150, 60) >>> s0 = test_data0.signal >>> s1 = test_data1.signal >>> s0.axes_manager[0].offset, s0.axes_manager[1].offset = -150, -150 >>> s1.axes_manager[0].offset, s1.axes_manager[1].offset = -150, -150 >>> import pixstem.radial as ra >>> s = ra.get_angle_image_comparison(s0, s1) >>> s.plot() Mask the inner parts >>> s = ra.get_angle_image_comparison(s0, s1, mask_radius=10) """ if s0.axes_manager.shape != s1.axes_manager.shape: raise ValueError("s0 and s1 need to have the same shape") s = s0.deepcopy() angle_array = np.ogrid[0:2*np.pi:(1+angleN)*1j] for i in range(len(angle_array[:-1])): if i % 2: angle0, angle1 = angle_array[i:i+2] bool_array = pst._get_angle_sector_mask(s, angle0, angle1) s.data[bool_array] = s1.data[bool_array] if mask_radius is not None: am = s.axes_manager mask = pst._make_circular_mask( am[0].value2index(0.0), am[1].value2index(0.0), am[0].size, am[1].size, mask_radius) mask = np.invert(mask) s.data *= mask return s
def _get_holz_angle(electron_wavelength, lattice_parameter): """ Parameters ---------- electron_wavelength : scalar In nanometers lattice_parameter : scalar In nanometers Returns ------- scattering_angle : scalar Scattering angle in radians Examples -------- >>> import pixstem.radial as ra >>> lattice_size = 0.3905 # STO-(001) in nm >>> wavelength = 2.51/1000 # Electron wavelength for 200 kV >>> angle = ra._get_holz_angle(wavelength, lattice_size) """ k0 = 1./electron_wavelength kz = 1./lattice_parameter in_root = kz*((2*k0)-kz) sin_angle = (in_root**0.5)/k0 angle = math.asin(sin_angle) return(angle) def _scattering_angle_to_lattice_parameter(electron_wavelength, angle): """Convert scattering angle data to lattice parameter sizes. Parameters ---------- electron_wavelength : float Wavelength of the electrons in the electron beam. In nm. For 200 kV electrons: 0.00251 (nm) angle : NumPy array Scattering angle, in radians. Returns ------- lattice_parameter : NumPy array Lattice parameter, in nanometers Examples -------- >>> import pixstem.radial as ra >>> angle_list = [0.1, 0.1, 0.1, 0.1] # in radians >>> wavelength = 2.51/1000 # Electron wavelength for 200 kV >>> lattice_size = ra._scattering_angle_to_lattice_parameter( ... wavelength, angle_list) """ k0 = 1./electron_wavelength kz = k0 - (k0*((1-(np.sin(angle)**2))**0.5)) return(1/kz) def _get_xy_points_from_radius_angle_plot(s_ra): x_list = [] y_list = [] for angle, radius in zip(s_ra.axes_manager[0].axis, s_ra.data): dx = -math.cos(angle)*radius dy = -math.sin(angle)*radius x_list.append(dx) y_list.append(dy) x_list = np.array(x_list) y_list = np.array(y_list) return(x_list, y_list) def _fit_ellipse_to_xy_points(x, y): """Fit an ellipse to a list of x and y points. Parameters ---------- x, y : NumPy 2D array Returns ------- ellipse_parameters : NumPy array """ xx = x*x yy = y*y xy = x*y ones = np.ones_like(x) D = np.vstack((xx, xy, yy, x, y, ones)) S = np.dot(D, D.T) C = np.zeros((6, 6)) C[0, 2], C[2, 0] = 2, 2 C[1, 1] = -1 A, B = la.eig(np.dot(la.inv(S), C)) i = np.argmax(np.abs(A)) g = B[:, i] return(g) def _get_ellipse_parameters(g): """ Parameters ---------- g : NumPy array Returns ------- xC, yC : floats Centre position semi_len0, semi_len1 : floats Length of minor and major semi-axis rot : float Angle between semi_len0 and the positive x-axis. Since semi_len0, is not necessarily the longest semi-axis, the rotation will _not_ be between the major semi-axis and the positive x-axis. In radians, between 0 and pi. The rotation is clockwise, so at rot = 0.1 the ellipse will be pointing in the positive x-direction, and negative y-direction. eccen : float Eccentricity of the ellipse Note ---- http://mathworld.wolfram.com/Ellipse.html """ a, b, c, d, f, g = g[0], g[1]/2, g[2], g[3]/2, g[4]/2, g[5] b2ac = b*b - a*c xC = (c*d - b*f)/b2ac yC = (a*f - b*d)/b2ac frac_top = 2*(a*f*f + c*d*d + g*b*b - 2*b*d*f - a*c*g) frac_square_bot = (a - c)*(a - c) + 4*b*b semi_len0 = math.sqrt( frac_top/(b2ac*(math.sqrt(frac_square_bot) - (a + c)))) semi_len1 = math.sqrt( frac_top/(b2ac*(-math.sqrt(frac_square_bot) - (a + c)))) if b == 0: if a < c: rot = 0 else: rot = math.pi*0.5 else: if a < c: rot = math.atan((2*b)/(a - c))/2 else: rot = math.pi/2 + (math.atan((2*b)/(a - c))/2) rot = rot % np.pi eccen = math.sqrt(1-((b*b)/(a*a))) return(xC, yC, semi_len0, semi_len1, rot, eccen) def _get_ellipse_from_parameters( x, y, semi_len0, semi_len1, rot, r_scale=0.05): R = np.arange(0, 2*np.pi, r_scale) xx = x + semi_len0*np.cos(R)*np.cos(rot) - semi_len1*np.sin(R)*np.sin(rot) yy = y + semi_len0*np.cos(R)*np.sin(rot) + semi_len1*np.sin(R)*np.cos(rot) return(xx, yy) def _get_marker_list( ellipse_parameters, x_list=None, y_list=None, name=None, r_scale=0.05): xC, yC, semi_len0, semi_len1, rot, ecce = _get_ellipse_parameters( ellipse_parameters) xx, yy = _get_ellipse_from_parameters( xC, yC, semi_len0, semi_len1, rot, r_scale=r_scale) marker_list = [] if x_list is not None: for x, y in zip(x_list, y_list): point_marker = point(x, y, color='red') if name is not None: point_marker.name = name + "_" + point_marker.name marker_list.append(point_marker) for i in range(len(xx)): if i == (len(xx) - 1): line = line_segment(xx[i], yy[i], xx[0], yy[0], color='green') else: line = line_segment(xx[i], yy[i], xx[i+1], yy[i+1], color='green') if name is not None: line.name = name + "_" + line.name marker_list.append(line) return marker_list
[docs]def fit_single_ellipse_to_signal( s, radial_signal_span, prepeak_range=None, angleN=20, show_progressbar=True): """ Parameters ---------- s : HyperSpy Signal2D radial_signal_span : tuple prepeak_range : tuple, optional angleN : int, default 20 show_progressbar : bool, default True Returns ------- signal : HyperSpy 2D signal Fitted ellipse and fitting points are stored as HyperSpy markers in the metadata xC, yC : floats Centre position semi_len0, semi_len1 : floats Length of minor and major semi-axis rot : float Angle between semi_len0 and the positive x-axis. Since semi_len0, is not necessarily the longest semi-axis, the rotation will _not_ be between the major semi-axis and the positive x-axis. In radians, between 0 and pi. The rotation is clockwise, so at rot = 0.1 the ellipse will be pointing in the positive x-direction, and negative y-direction. eccen : float Eccentricity of the ellipse signal, xC, yC, semi0, semi1, rot, ecc Examples -------- >>> import pixstem.make_diffraction_test_data as mdtd >>> s = ps.PixelatedSTEM(np.zeros((200, 220))) >>> s.axes_manager[0].offset, s.axes_manager[1].offset = -100, -110 >>> xx, yy = np.meshgrid(s.axes_manager[0].axis, s.axes_manager[1].axis) >>> ellipse_ring = mdtd._get_elliptical_ring(xx, yy, 0, 0, 50, 70, 0.8) >>> s.data += ellipse_ring >>> from pixstem.radial import fit_single_ellipse_to_signal >>> output = fit_single_ellipse_to_signal( ... s, (40, 80), angleN=30, show_progressbar=False) """ s_ra = get_radius_vs_angle( s, radial_signal_span, angleN=angleN, prepeak_range=prepeak_range, show_progressbar=show_progressbar) x, y = _get_xy_points_from_radius_angle_plot(s_ra) ellipse_parameters = _fit_ellipse_to_xy_points(x, y) xC, yC, semi0, semi1, rot, ecc = _get_ellipse_parameters( ellipse_parameters) marker_list = _get_marker_list(ellipse_parameters, x_list=x, y_list=y) s_m = s.deepcopy() s_m.add_marker(marker_list, permanent=True, plot_marker=False) return s_m, xC, yC, semi0, semi1, rot, ecc
[docs]def fit_ellipses_to_signal( s, radial_signal_span_list, prepeak_range=None, angleN=20, show_progressbar=True): """ Parameters ---------- s : HyperSpy Signal2D radial_signal_span_list : tuple prepeak_range : tuple, optional angleN : list or int, default 20 show_progressbar : bool, default True Returns ------- signal : HyperSpy 2D signal Fitted ellipse and fitting points are stored as HyperSpy markers in the metadata xC, yC : floats Centre position semi_len0, semi_len1 : floats Length of the two semi-axes. rot : float Angle between semi_len0 and the positive x-axis. Since semi_len0, is not necessarily the longest semi-axis, the rotation will _not_ be between the major semi-axis and the positive x-axis. In radians, between 0 and pi. The rotation is clockwise, so at rot = 0.1 the ellipse will be pointing in the positive x-direction, and negative y-direction. eccen : float Eccentricity of the ellipse Examples -------- >>> import pixstem.make_diffraction_test_data as mdtd >>> s = ps.PixelatedSTEM(np.zeros((200, 220))) >>> s.axes_manager[0].offset, s.axes_manager[1].offset = -100, -110 >>> xx, yy = np.meshgrid(s.axes_manager[0].axis, s.axes_manager[1].axis) >>> ellipse_ring = mdtd._get_elliptical_ring(xx, yy, 0, 0, 50, 70, 0.8) >>> s.data += ellipse_ring >>> from pixstem.radial import fit_ellipses_to_signal >>> output = fit_ellipses_to_signal( ... s, [(40, 80)], angleN=30, show_progressbar=False) """ if not isiterable(angleN): angleN = [angleN]*len(radial_signal_span_list) else: if len(angleN) != len(radial_signal_span_list): raise ValueError( "angleN and radial_signal_span_list needs to have " "the same length") marker_list = [] ellipse_list = [] for i, (radial_signal_span, aN) in enumerate(zip( radial_signal_span_list, angleN)): s_ra = get_radius_vs_angle( s, radial_signal_span, angleN=aN, prepeak_range=prepeak_range, show_progressbar=show_progressbar) x, y = _get_xy_points_from_radius_angle_plot(s_ra) ellipse_parameters = _fit_ellipse_to_xy_points(x, y) output = _get_ellipse_parameters(ellipse_parameters) ellipse_list.append(output) marker_list.extend(_get_marker_list( ellipse_parameters, x_list=x, y_list=y, name='circle' + str(i))) s_m = s.deepcopy() s_m.add_marker(marker_list, permanent=True, plot_marker=False) return s_m, ellipse_list